

SYNTHESIS OF NOVEL 1,5 – BENZOTIAZEPINES CONTAINING 2H(1) -QUINOLIN -2-ONE HETEROCYCLE[†]

K SUCHETA and B VITTAL RAO*

Organic II Division, Indian Institute of Chemical Technology, Hyderabad

Abstract: New Heterocyclic systems namely 1,5-benzothiazepines derivatives (**4a-h**) have been synthesized via reaction of Chalcone(s) and 2-aminothio phenol in good yields. Some of the compounds have shown good anti-bacterial activity.

Introduction:

Many heterocyclic compounds containing nitrogen, oxygen and sulphur show wide variety of physiological activities. 1,5-benzothiazepine compounds have demonstrated interesting biological activity such as coronary vasodialatory¹, tranquiliser^{2,3}, anti depressant⁴, anti spasmody⁶, neuroleptic⁶, CNS⁷ and anti-HIV⁸ activity

Literature survey reveals that 1,5-benzothiazepines incorporating several alkyl, aryl groups and benzopyranyl moiety on 4-position of benzothiazepine skeleton. It is well known that 2H-(1)-benzopyran-2-one derivative exhibit wide range of biological activity and their isostere, 2H-(1)- quinolin-2-one are also endowed with activity⁹. In continuation of our work on the synthesis of 1,5-benzothiazepines¹⁰, we report here the synthesis of some novel 1,5-benzothiazepines containing 2H-(1)-quinolin-2-one, utilizing (quinolin-2-one-3-yl)-2-propenones (Chalcones) and 2-amino thiophenol, guided mainly by the observation that many a times, the combination of two or more heterocyclic nuclei in a singular molecular framework enhances the biological profile many a fold.

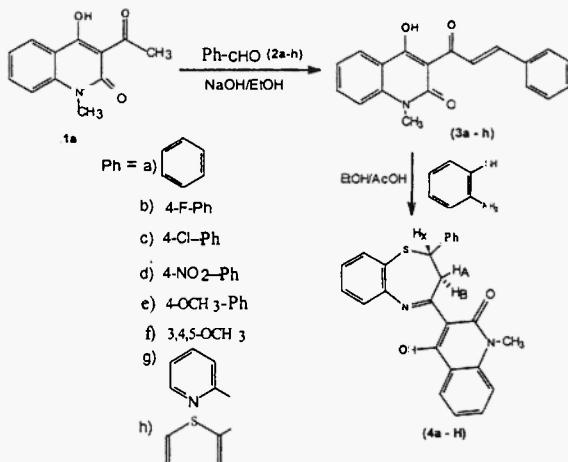
Results and Discussion :

The requisite starting material 3-Acetyl- 4-hydroxy-1-methyl 2H-(1)-quinolin-2-one¹¹ (**1**) has been prepared by the known literature method. Condensation of (**1**) with variety of aromatic, heteroaromatic aldehydes (**2a-h**) in ethanol and sodium hydroxide resulted in 2H-(1)- quinolin-2-one-3-yl)-3-aryl-2-propenones (**3a-h**). These compounds (**3a-h**) were characterised by spectroscopic means and are comparable with literature data.

2-propenone derivatives (chalcones) when treated with 2-amino thiophenol in ethyl alcohol medium with few drops of glacial acetic acid afforded 2-aryl-4-(4'-hydroxyl-1-methyl-2H-1-quinolin-2-one-3'-yl)-2,3-dihydro-1,5-benzothiazepines (**4a-h**) in very good yields. The compounds have been characterised by spectral means such as IR, NMR and Mass. In IR spectra, characteristic band at 1600-1616cm⁻¹ is attributed to C=N bond for the 2,3-dihydro-1,5-benzothiazepines. Further the structure was unequivocally proved by the NMR spectra of the protons attached to the carbons C-2 and C-3 which appeared as a typical ABX pattern [δ 2.65(1H_A,dd), 4.45(1H_B,dd), 5.40(1H_X,dd) with J_{AB} = 12.5 Hz, J_{BX} = 7.0 Hz and J_{AX} = 15.0 Hz]. All the 1,5-benzothiazepines synthesised were characterised by mp's, NMR, IR and Mass.

Biological Testing :

The sensitivity of bacteria to various substituted 1,5-benzothiazepines was determined by " Cup-Diffusion Method"¹². Known dilutions of the test solution and a standard solution of antibiotic drug pipetted into the cups, the plates are incubated, and the inhibitory zones resulting on the plates were noted and measured¹². Among the compounds tested **4c,4d,4f,4g** and **4h** have shown very good anti-bacterial activity against Gram (+)ve bacteria, *B.subtilis* at a concentration of 100 µg/mm. Further testing is in progress for QSAR studies and the detailed results will be published elsewhere. The results are given in Table 2.


Table 1 : Physical and Spectral Data of 1,5-Benzothiazepines

Compound	Mp(°C)	Yield	¹ H-NMR (200 MHz, CDCl ₃), ppm
4a	225	75	δ 2.65 (1H, dd, J _{AB} = 12.5 Hz ; J _{AX} = 15.0 Hz ; H _A), 4.45 (1H, dd, J _{BA} = 12.5 Hz ; J _{BX} = 7.0 Hz ; H _B) ; 5.40 (1H, dd, J _{XA} = 15.0 Hz ; J _{XB} = 7.0 Hz ; H _X) , 7.00-8.25 (13H, m , Ar-H) & 3.62 (3H,s,N-CH ₃)
4b	245	70	δ 2.65 (1H, dd, J _{AB} = 12.5 Hz ; J _{AX} = 15.0 Hz ; H _A), 4.48 (1H, dd, J _{BA} = 12.5 Hz ; J _{BX} = 7.0 Hz ; H _B) ; 5.41 (1H, dd, J _{XA} = 15.0 Hz ; J _{XB} = 7.0 Hz ; H _X) , 7.00-8.25 (12H, m , Ar-H) & 3.60 (3H,s,N-CH ₃)
4c	250	70	δ 2.60 (1H, dd, J _{AB} = 12.5 Hz ; J _{AX} = 15.0 Hz ; H _A), 4.45 (1H, dd, J _{BA} = 12.5 Hz ; J _{BX} = 7.0 Hz ; H _B) ; 5.40 (1H, dd, J _{XA} = 15.0 Hz ; J _{XB} = 7.0 Hz ; H _X) , 6.80-8.20 (12H, m , Ar-H) & 3.60 (3H,s,N-CH ₃)
4d	246	68	δ 2.61 (1H, dd, J _{AB} = 12.5 Hz ; J _{AX} = 15.0 Hz ; H _A), 4.45 (1H, dd, J _{BA} = 12.5 Hz ; J _{BX} = 7.0 Hz ; H _B) ; 5.40 (1H, dd, J _{XA} = 15.0 Hz ; J _{XB} = 7.0 Hz ; H _X) , 6.80-8.25 (12H, m , Ar-H) & 3.61 (3H,s,N-CH ₃)
4e	256	70	δ 2.64 (1H, dd, J _{AB} = 12.5 Hz ; J _{AX} = 15.0 Hz ; H _A), 4.45 (1H, dd, J _{BA} = 12.5 Hz ; J _{BX} = 7.0 Hz ; H _B) ; 5.40 (1H, dd, J _{XA} = 15.0 Hz ; J _{XB} = 7.0 Hz ; H _X) , 6.90-8.20 (12H, m , Ar-H) & 3.61 (3H,s,N-CH ₃), 3.80(3H,s, OCH ₃)
4f	265	70	δ 2.61 (1H, dd, J _{AB} = 12.5 Hz ; J _{AX} = 15.0 Hz ; H _A), 4.45 (1H, dd, J _{BA} = 12.5 Hz ; J _{BX} = 7.0 Hz ; H _B) ; 5.40 (1H, dd, J _{XA} = 15.0 Hz ; J _{XB} = 7.0 Hz ; H _X) , 6.60-8.25 (10H, m , Ar-H) & 3.61 (3H,s,N-CH ₃), 3.80(9H,S, OCH ₃).
4g	250	72	δ 2.90 (1H, dd, J _{AB} = 12.5 Hz ; J _{AX} = 15.0 Hz ; H _A), 4.50 (1H, dd, J _{BA} = 12.5 Hz ; J _{BX} = 7.0 Hz ; H _B) ; 5.40 (1H, dd, J _{XA} = 15.0 Hz ; J _{XB} = 7.0 Hz ; H _X) , 7.20-8.10 (12H, m , Ar-H) & 3.61 (3H,s,N-CH ₃)
4h	245	65	δ 2.70 (1H, dd, J _{AB} = 12.5 Hz ; J _{AX} = 15.0 Hz ; H _A), 4.60 (1H, dd, J _{BA} = 12.5 Hz ; J _{BX} = 7.0 Hz ; H _B) ; 5.60 (1H, dd, J _{XA} = 15.0 Hz ; J _{XB} = 7.0 Hz ; H _X) , 6.90-7.90 (11H, m , Ar-H) & 3.61 (3H,s,N-CH ₃)

Table 2: Anti- Bacterial activity of 1,5-Benzothiazepines (Results after 24 hr)

Test Organism	Conent $\mu\text{g}/\text{mm}$	Zone of inhibition(diamcter in mm) (100 $\mu\text{g}/\text{cup}$)									Positive control (PEN-G) 30 $\mu\text{g}/\text{mm}$	Negative control (CHCl ₃)
		compounds	4a	4b	4c	4d	4e	4f	4g	4h		
Gram+ve Bacteria												
Bacillus.sph Aericsu	100	—									20	—
B.subtilis	100	9	8	18	16	---	40	35	20		19	
Staphylococcus.aureus	100										19	
Gram -ve											Streptomycin	
Pseudomonas.Auriginosa	100										29	
Klebsiella.aer-genues	100	9	7	8	7	9	11	10	10		30	
Escherichia.coli	100	12									28	

“—” represents no zone

Experimental :

All the melting points were carried out in an open capillary and are uncorrected. Proton NMR spectra were recorded on 200 MHz spectrometer in CDCl_3 and the chemical shift values were reported in δ (ppm) and J values are expressed in hertz.

3-acetyl-4-hydroxy-1-methyl-2H(1) quinolin-2-one: (1a)
synthesised according to the reported procedure¹¹.

1-2H(1)-quinolin-2-one-3-yl)-3-aryl-2-proponones: (3a-h)

To an ethanolic solution of (1)(0.01 mmole) was added 15% NaOH (10 ml) while stirring at room temperature, then the appropriate aldehyde (0.01mmole) was added and stirred 10-12 hrs at R.T. At the end the reaction mixture was carefully neutralised with 5% aq.HCl to yield yellow colour solid, which was filtered, washed several times with cold EtOH and water, dried and recrystallised with ethanol.

2-aryl-4-(4'-hydroxy-1-methyl-2H(1)-quinolin-2-one-3'-yl)-2,3-dihydro-1,5-benzothiazepines : (4a-h)

Proponone (3a-h) (0.01mmole) was dissolved in ethanol (20ml), to this 2-thioamino phenol (0.01mmole) and few drops of acetic acid was added and the reaction mixture was refluxed on water bath. After 2hrs a yellow fluffy solid starts separating out. The reaction mixture was further refluxed for one more hour, cooled and the separated solid was filtered and washed several times with hot ethanol. The compound was dried and recrystallised using acetone to get pure 1,5-benzothiazepines. All other derivatives were prepared accordingly. The results are tabulated in table 1.

Acknowledgements : The authors are thankful to the Director, and the Head, Biology Division, IICT for providing the facilities and evaluating the bio efficacy respectively. One of the author SK is thankful to CSIR, New Delhi for the award of Research Associateship.

References :

1. K.Hirashi, T.Satoshi and M.Masanori, *jpn.pat*, 7208,544(1972) ; *Chem. Abstr.*, **77**,5554h (1972)
2. J.Krapcho, *Chem. Abstr.*, **71**, 11300K (1969)
3. H.Inoue and H.Kugita, *Chem. Abstr.*, **90**,1378r (1979)
4. H.M.Geyer,N.Hatzman and J.P.Buckley, *J.Pharmacol.Sci* , **59**, 964 (1970); *Chem. Abstr.*, **73**,75424 (1970)
5. J.krapcho, U.S.Pat., 3,361,750 (1968)., *Chem. Abstr.*, **69**, 36194e (1968)
6. J.B.Benz, P.Jean and H.Winker, *Chem. Abstr.*, **71**, 59675w (1972)
7. M.Nakunishi,G.Hasegawa and T.Furuta, *Chem. Abstr.*, **76**,59675w(1972)
8. G.Grandolini, L.Pesioyi,V.Ambrogi, *Eur.J.Med.Chem.* **34**,701.(1989)
9. K.Tsuji, G.W. Spears, K.Nakamora, T.Tojo ,N.Seki, A.Sugiyama and M.Matsuo., *Bioorg.Med Chem.Lett*, **12**,85 (2002)
10. K.Sucheta, A.Prashant and N.Rama Rao., *Indian J.Chem* **34b**, 893(1995)
11. A.A.Z. El Fayomi, S.M.Sami, *Egypt.J.Chem*, **23**(3),191(1980)
12. L.Margery Linday. *Antibiotics*, 1962

Received on May 27, 2002